ARIC Manuscript Proposal #2454

PC Reviewed: 10/14/14	Status: <u>A</u>	Priority: <u>2</u>
SC Reviewed:	Status:	Priority:

1.a. Full Title: Association of metabolic syndrome and insulin resistance with pulse wave velocity: the ARIC Study

b. Abbreviated Title (Length 26 characters): Insulin resistance and pulse wave velocity

2. Writing Group:

Writing group members: Anna Poon, Michelle Snyder, Liz Selvin, David Couper, Laura Loehr, Hirofumi Tanaka, Gerardo Heiss, others welcome

I, the first author, confirm that all the coauthors have given their approval for this manuscript proposal. <u>AP</u> [please confirm with your initials electronically or in writing]

First author: Anna Poon

Address: University of North Carolina at Chapel Hill 137 E. Franklin St, Suite 303 Chapel Hill, NC, USA 27514

> Phone: 312-804-1672 E-mail: apoon@email.unc.edu

Fax:

ARIC author to be contacted if there are questions about the manuscript and the first author does not respond or cannot be located (this must be an ARIC investigator). Name: Gerardo Heiss Address: University of North Carolina at Chapel Hill 137 E. Franklin St., Suite 400 Chapel Hill, NC, USA 27514

> Phone: 919-962-3253 E-mail: gerardo_heiss@unc.edu

Fax: 919-966-9800

3. Timeline: Analysis to start once approval is obtained. We plan to complete the manuscript within eight months from approval of the proposal.

4. **Rationale**: Metabolic syndrome is associated with increased risk of cardiovascular disease [1, 2] and diabetes [3]. The metabolic syndrome is characterized by a clustering of risk factors, including raised blood pressure, dyslipidemia (raised triglycerides and lowered high-density lipoprotein cholesterol), raised fasting glucose, and central obesity. The presence of three or more of these risk factors constitutes a clinical presentation of this condition [4, 5].

7

Pulse wave velocity is a valid and reliable measure of arterial stiffness and has been 8 shown to predict cardiovascular morbidity and mortality [6, 7]. Indeed, prior studies have 9 shown an association of metabolic syndrome with higher peripheral pulse wave velocity 10 measurements [8-13]. These studies, however, were limited to clinical settings, 11 homogeneous populations, and did not evaluate differences by either gender or race 12 (subgroups with known differences in cardiovascular risk). Moreover, none of these 13 studies evaluated multiple (i.e. different) indices of insulin resistance, which may mediate 14 the association of metabolic syndrome with arterial stiffness. From a practical standpoint, 15 we are interested in this question because the metabolic syndrome presents multiple 16 17 targets (individual components) for intervention.

18

The goal of our analysis will be to examine the association of central and peripheral arterial stiffness measured by carotid-femoral pulse wave velocity, brachial-ankle pulse wave velocity, and femoral-ankle pulse wave velocity with the metabolic syndrome and insulin resistance indices in older adults.

23 24

25

29

30

31

32 33

34

35

36

37

38 39

40

5. Main Hypothesis/Study Questions:

Aim 1: To examine the association of the metabolic syndrome with carotid-femoral
 (cfPWV), brachial-ankle (baPWV), and femoral-ankle (faPWV) pulse wave velocity at
 ARIC Visit 5 (2011-2013). Our hypotheses include the following:

1. Hypothesis #1: Metabolic syndrome is positively associated with arterial stiffness. Average cfPWV, baPWV, and faPWV will be higher in persons with metabolic syndrome as compared to persons without metabolic syndrome.

2. Hypothesis #2: The association of metabolic syndrome with arterial stiffness is additive. The individual components of the metabolic syndrome will be positively associated with each pulse wave velocity measurement. Moreover, average cfPWV, baPWV, and faPWV will be higher in persons with a higher number of risk factors for the metabolic syndrome as compared to persons with a lower number of risk factors for the metabolic syndrome.

- 41
 41
 42
 43
 44
 44
 45
 45
 45
 45
 46
 47
 48
 49
 49
 49
 49
 49
 40
 40
 41
 42
 43
 44
 44
 45
 45
 46
 47
 48
 49
 49
 49
 49
 49
 49
 40
 41
 41
 42
 43
 44
 44
 45
 45
 45
 46
 47
 48
 49
 49
 49
 49
 40
 41
 41
 42
 43
 44
 44
 45
 45
 45
 46
 47
 47
 48
 49
 49
 49
 49
 40
 41
 41
 42
 43
 44
 44
 45
 45
 45
 46
 47
 47
 48
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 49
 <
- 46

1	Aim 2	: To examine the association of the insulin resistance indices (as estimated by
2	fasting	insulin, the homeostatic model assessment (HOMA), McAuley's Index, and the
3	triglyc	erides and glucose (TyG) index.) with carotid-femoral (cfPWV), brachial-ankle
4	(baPW	V), and femoral-ankle (faPWV) pulse wave velocity at ARIC Visit 5 (2011-2013).
5	Our hy	potheses include the following:
6	4.	Hypothesis #1: Estimated insulin resistance is positively associated with arterial
7		stiffness Higher average cfPWV baPWV and faPWV will be associated with
8		higher average levels of each insulin resistance index.
9		ingher average revers of each insum resistance index.
10	5.	Hypothesis #2: Sex and race will modify the association of insulin resistance with
11		arterial stiffness. The association of insulin resistance indices and cfPWV.
12		baPWV, and faPWV will be greater in females than males, and greater in African
13		Americans than Caucasians
14		
15	Aim 3	To prospectively track metabolic syndrome presentation at ARIC Visit 1 (1987-
16	1989)	Visit 2 (1990-1992) Visit 3 (1993-1995) Visit 4 (1996-1998) and Visit 5 (2011-
17	2013)	visit 2 (1990 1992), visit 3 (1993 1993), visit 1 (1990 1990), and visit 3 (2011
18	2013).	
10	6	Hypothesis #1: Once present the metabolic syndrome designation (the presence
20	0.	of three out of five metabolic syndrome risk factors) will remain stable over time
20		Metabolic syndrome components (specifically, the presence of abdominal obesity
21		reduced HDL cholesterol levels and elevated blood pressure) will rank
22		comparably (or "track") over time, as compared to the preceding visit
23		comparably (of track) over time, as compared to the preceding visit.
24 25	7	Hypothesis #2: Time in metabolic syndrome over the course of follow up is
25	7.	(independently) associated with cfDWV haDWV and faDWV
20		(independentry) associated with cir w v, bar w v, and far w v.
21	Q	Hypothesis #2: The longitudinal association of the metabolic syndrome with
20	0.	PWV at Visit 5 reflects the intensity of exposure (number of metabolic risk
29		factors / follow up time on an additive scale) more so than the duration of the
30 21		exposure (length of exposure normalized for intensity)
22		exposure (length of exposure normalized for intensity).
32 22	6 Dog	ian and analysis (study design, inclusion/avalusion, outcome and other
24	vorioh	las of interest with specific reference to the time of their collection, summary
25	of date	a analysis and any anticipated methodologic limitations or challenges if
35 26	or ual	a analysis, and any anticipated includiologic minitations of chancinges in
30 27	preser	ı <i>t)</i> .
20	Study	design
38 20	Study	uesign.
39	Aima	1 and 2. Cross sectional. The study nonvestion will include ADIC participants with
40	AIIIIS .	and 2: Cross-sectional. The study population will include ARIC participants with
41	puise v	wave velocity measurements at AKIC visit 5 (2011-2013).
42	A : 0	Deconceptive The study nonvelotion will in the de ADIC mention with
43	Aim 3	Prospective. The study population will include AKIC participants with
44	measu	rements for waist circumference, trigiycerides, HDL cholesterol, blood pressure,
45	and fas	sting glucose at AKIC V1sits1 (1987-1989), V1sit 2 (1990-1992), V1sit 3 (1993- $N_{1}^{2} + 4 (1000 - 1000) = 1 N_{1}^{2} + 5 (2011 - 2012)$
46	1995),	v1sit 4 (1996-1998), and v1sit 5 (2011-2013).
47		

1 **Exclusions:** Participants with missing values for the following variables will be excluded

2 from the analysis: cfPWV, baPWV, faPWV, components of the metabolic syndrome and

3 insulin resistance indices (gender, waist-circumference measurements, triglycerides,

4 high-density lipoprotein cholesterol, systolic/diastolic blood pressure, fasting glucose,

5 and fasting insulin) and other covariates of interest (including age and race). Participants

6 with diabetes will be excluded from this analysis.

7

8 Additional exclusions for pulse wave velocity were made due to data quality concerns:

9 (1) BMI \geq 40 kg/m², (2) evidence of a major arrhythmia on a 12-lead ECG; (3) self-

10 reported aortic revascularization surgery; (4) aortic aneurysm; (5) aortic stenosis and

aortic regurgitation; and (6) pulse wave velocity values greater than 3 standard deviations
 away from the mean.

13

14 **Exposure:** *Metabolic syndrome*. The metabolic syndrome will be analyzed as a binary

15 variable (yes or no) and indicator variable (indicators will be defined by the number of

present risk factors: 0, 1, 2, 3, 4, and 5). This analysis will use the definition for

17 metabolic syndrome set by the American Heart Association/National Heart, Lung, and

18 Blood Institute [4]; central obesity will be based on waist circumference cut-points set by

19 the International Diabetes Federation [14].

20

Components of the metabolic syndrome	Categorical cut points
Elevated waist circumference	102 cm in males
	88 cm in females
Elevated triglycerides	≥150 mg/dL (1.7 mmol/L) or
	drug treatment for elevated triglycerides
Reduced HDL-C	<40 mg/dL (1.0 mmol/L) in males
	<50 mg/dL (1.3 mmol/L) in females
Elevated blood pressure	SBP ≥130 mm/Hg and/or DBP≥85 mmHg or
	antihypertensive drug treatment
Elevated fasting glucose	≥100 mg/dL

21 22

23 Insulin resistance. Insulin resistance indices will be analyzed continuously. Four insulin

resistance indices will be examined [15-17]; each of the latter three measures have

correlated well with or have been validated against the euglycemic clamp test, the gold

26 standard for characterizing insulin resistance.

27

Insulin resistance indices	Definition
Fasting insulin	μU/mL
HOMA-IR	Fasting glucose (mg/dL) x fasting insulin (uU/mL) / 405
McAuley's Index (Mffm/I)	exp[2.63 – 0.28ln(insulin) – 0.31ln(TG)]
Triglycerides and glucose (TyG) index	[In(fasting TG) (mg/dL) x fasting glucose (mg/dL) / 2]

28

29 **Outcome:** Pulse wave velocity will be analyzed continuously. Values for cfPWV,

30 baPWV, and faPWV were measured using the Colin VP-1000 Plus system (Omron Co.,

1 Ltd., Komaki, Japan). The path length was calculated using the following: distance

traveled (cm) = carotid-femoral distance (cm) – (suprasternal notch – carotid distance (cm)).

4

5 Statistical analysis:

(a) Aim 1, Hypothesis 1: Summary statistics for cfPWV, baPWV, and faPWV will be 6 examined by metabolic syndrome diagnosis (yes or no) at baseline (visit 1). Multivariable 7 regression will be used to estimate the association of metabolic syndrome with cfPWV, 8 baPWV, and faPWV (estimated coefficients and 95% confidence intervals will describe 9 the difference in cfPWV, baPWV, and faPWV between persons with and without 10 diagnosed metabolic syndrome). We will examine unadjusted associations (model 1) and 11 associations adjusted for age, race, and gender (model 2). 12 13 (b) Aim 1, Hypothesis 2: Summary statistics for cfPWV, baPWV, and faPWV will be 14 examined stratified by the presence of 0, 1, 2, 3, 4, and 5 risk factors for metabolic 15 syndrome. Multivariable regression will be used to estimate the association of the 16 presence of each additional risk factor for metabolic syndrome with cfPWV, baPWV, and 17 faPWV (estimated coefficients and 95% confidence intervals will describe the difference 18 in cfPWV, baPWV, and faPWV between persons with 1, 2, 3, 4, and 5 risk factors, as 19 compared to 0 risk factors; the referent group of 0 risk factors may change). We will 20 examine unadjusted associations (model 1) and associations adjusted for age, race, and 21 gender (model 2). 22 23

(c) Aim 1, Hypothesis 3: The analyses for aim 1 (hypotheses 1 and 2) will be repeated
stratified by sex (model 3) and race (model 4). Formal tests for interaction will be
included.

27

(d) Aim 2, Hypothesis 1: Scatter plots will be used to examine the unadjusted association
of insulin resistance indices with cfPWV, baPWV, and faPWV; insulin resistance indices
will be analyzed to reflect either linear or non-linear associations with pulse wave
velocity measurements. Multivariable regression will be used to estimate the association
of insulin resistance indices with cfPWV, baPWV, and faPWV. We will examine
unadjusted associations (model 1) and associations adjusted for age, race, and gender
(model 2).

35

38

(e) Aim 2, Hypothesis 2: The analyses for aim 2 (hypothesis 1) will be repeated stratified
 by sex (model 3) and race (model 4). Formal tests for interaction will be included.

39 (f) Aim 3, Hypothesis 1 - 4: Metabolic syndrome diagnosis (the presence of three out of

five metabolic syndrome risk factors) will be tracked for Visits 1, 2, 3, 4, and 5.
Components of the metabolic syndrome will be tracked for Visits 1, 2, 3, 4, and 5.

41 42

44

43 (g) Inverse probability weighting will be used to account for participant attrition.

45 7.a. Will the data be used for non-CVD analysis in this manuscript? _____ Yes

46 _____**No**

1	
2	b. If Yes, is the author aware that the file ICTDER03 must be used to exclude
3	persons with a value RES OTH = "CVD Research" for non-DNA analysis, and
4	for DNA analysis RES \overline{DNA} = "CVD Research" would be used?
5	Yes No
6	(This file ICTDER has been distributed to ARIC PIs, and contains
7	the responses to consent undates related to stored sample use for research)
8	the responses to consent apartes related to stored sumple use for research.)
0	8 a. Will the DNA data he used in this manuscript?
7 10	Voc No
10	
11	Q h. If was is the outhor among that sither DNA data distributed by the
12	8.0. If yes, is the author aware that either DNA data distributed by the
13	Coordinating Center must be used, or the file ICI DER03 must be used to
14	exclude those with value RES_DNA = "No use/storage DNA"?
15	Yes No
16	
17	9. The lead author of this manuscript proposal has reviewed the list of existing
18	ARIC Study manuscript proposals and has found no overlap between this
19	proposal and previously approved manuscript proposals either published or still
20	in active status. ARIC Investigators have access to the publications lists under the
21	Study Members Area of the web site at: <u>http://www.cscc.unc.edu/ARIC/search.php</u>
22	
23	YesNo
24	
25	10. What are the most related manuscript proposals in ARIC (authors are
26	encouraged to contact lead authors of these proposals for comments on the new
27	proposal or collaboration)?
28	• "The association of diabetes impaired glucose tolerance and chronic
29	hyperglycemia with pulse wave velocity: the ARIC study " (First author: Laura
30	Ross Loehr)
31	Ross Local y
22	11 a. Is this manuscript proposal associated with any ADIC ancillary studies on use
32 22	any ancillary study data?
33	any ancinary study data: i es No
34	11 h If
35	11.d. If yes, is the proposal
36	A. primarily the result of an ancillary study (list number*)
37	B. primarily based on ARIC data with ancillary data playing a minor
38	role (usually control variables; list number(s)*
39)
40	
41	*ancillary studies are listed by number at <u>http://www.cscc.unc.edu/aric/forms/</u>
42	
43	12a. Manuscript preparation is expected to be completed in one to three years. If a
44	manuscript is not submitted for ARIC review at the end of the 3-years from the date
45	of the approval, the manuscript proposal will expire.
46	

1 12b. The NIH instituted a Public Access Policy in April, 2008 which ensures that the

2 public has access to the published results of NIH funded research. It is your

3 **responsibility to upload manuscripts to PUBMED Central** whenever the journal does

4 not and be in compliance with this policy. Four files about the public access policy from

5 <u>http://publicaccess.nih.gov/</u> are posted in <u>http://www.cscc.unc.edu/aric/index.php</u>, under

6 Publications, Policies & Forms. <u>http://publicaccess.nih.gov/submit_process_journals.htm</u>

7 shows you which journals automatically upload articles to Pubmed central.

8

9

10

1		Works Cited
2		
3	1.	Lakka, H., et al., The metabolic syndrome and total cardiovascular disease
4		mortality in middle-aged men. The Journal of the American Medical Association,
5		2002. 288 (21): p. 2709-16.
6	2.	Isomaa, B., et al., Cardiovascular morbidity and mortality associated with the
7		metabolic syndrome. Diabetes Care, 2001. 24(4): p. 683-9.
8	3.	Ford, E.S., Risks for all-cause mortality, cardiovascular disease, and diabetes
9		associated with the metabolic syndrome: a summary of evidence. Diabetes Care,
10		2005. 28 (7): p. 1769.
11	4.	Alberti, K.G.M.M., et al., Harmonizing the Metabolic Syndrome: A Joint Interim
12		Statement of the International Diabetes Federation Task Force on Epidemiology
13		and Prevention; National Heart, Lung, and Blood Institute; American Heart
14		Association; World Heart Federation; International Atherosclerosis Society; and
15		International Association for the Study of Obesity. Circulation, 2009. 120: p.
16		1640-1645.
17	5.	Haffner, S.M., et al., Prospective analysis of the insulin-resistance syndrome
18		(Syndrome X). Diabetes, 1992. 41 (6): p. 715-722.
19	6.	Vlachopoulos, C., K. Aznouridis, and C. Stefanadis, Prediction of cardiovascular
20		events and all-cause mortality with arterial stiffness: a systematic review and
21		meta-analysis. Journal of the American College of Cardiology, 2010. 55(13): p.
22		1318-27.
23	7.	Cecelja, M. and P. Chowienczyk, Role of arterial stiffness in cardiovascular
24		disease. JRSM Cardiovascular Disease, 2012. 1(4).
25	8.	Kim, Y., et al., Metabolic syndrome and arterial pulse wave velocity. Acta
26		Cardiologica, 2010. 65 (3): p. 315-21.
27	9.	Nam, J., et al., The association between pulse wave velocity and metabolic
28		syndrome and adiponectin in patients with impaired fasting glucose:
29		cardiovascular risks and adiponectin in IFG. Diabetes Research and Clinical
30		Practice, 2009. 84 (2): p. 145-151.
31	10.	Roes, S., et al., Assessment of aortic pulse wave velocity and cardiac diastolic
32		function in subjects with and without the metabolic syndrome: HDL is
33		independently associated with cardiovascular function. Diabetes Care, 2008.
34		31 (7): p. 1442-1444.
35	11.	Tsubakimoto, A., et al., Impact of metabolic syndrome on brachial-ankle pulse
36		wave velocity in Japanese. Hypertension Research, 2006. 29(1): p. 29-37.
37	12.	Schillaci, G., et al., Metabolic syndrome is associated with aortic stiffness in
38	10	untreated essential hypertension. Hypertension, 2005. 45: p. 1078-1082.
39	13.	Nakanishi, N., T. Shiraishi, and M. Wada, Brachial-ankle pulse wave velocity and
40		metabolic syndrome in a Japanese population: the Minoh Study. Hypertension
41	1.4	Research, 2005. 28(2): p. 125-31.
42	14.	rederation, I.D., The IDF consensus worldwide definition of the metabolic
43	15	synarome. 2006, Brussels, Belgium: International Diabetes Federation. 24.
44	15.	Guerrero-Komero, F., et al., <i>The product of triglycerides and glucose, a simple</i>
45		measure of insulin sensitivity. Comparison with the euglycemic-hyperinsulinemic

1		<i>clamp</i> . The Journal of Clinical Endocrinology and Metabolism, 2010. 95 (7): p.
2		3347-51.
3	16.	Hanley, A.J., et al., Homeostasis model assessment of insulin resistance in
4		relation to the incidence of cardiovascular disease: the San Antonio Heart Study.
5		Diabetes Care, 2002. 25(7): p. 1177-1184.
6	17.	McAuley, K., et al., <i>Diagnosing insulin resistance in the general population</i> .
7		Diabetes Care, 2001. 24: p. 460-464.
8		-